On the H-triangle of generalised nonnesting partitions
نویسنده
چکیده
With a crystallographic root system Φ, there are associated two Catalan objects, the set of nonnesting partitions NN(Φ), and the cluster complex ∆(Φ). These possess a number of enumerative coincidences, many of which are captured in a surprising identity, first conjectured by Chapoton. We prove this conjecture, and indicate its generalisation for the Fuß-Catalan objects NN (Φ) and ∆(Φ), conjectured by Armstrong. Résumé. À un système de racines cristallographique, on associe deux objets de Catalan: l’ensemble des partitions non-emboı̂tées NN(Φ), et le complexe d’amas ∆(Φ). Ils possèdent de nombreuses coı̈ncidences énumératives, plusieurs d’entre elles étant capturées dans une identité surprenante, conjecturée par Chapoton. Nous démontrons cette conjecture, et indiquons sa généralisation pour les objets de Fuß-Catalan NN (Φ) et ∆(Φ), conjecturée par Armstrong.
منابع مشابه
On Noncrossing and Nonnesting Partitions for Classical Reflection Groups
The number of noncrossing partitions of {1, 2, . . . , n} with fixed block sizes has a simple closed form, given by Kreweras, and coincides with the corresponding number for nonnesting partitions. We show that a similar statement is true for the analogues of such partitions for root systems B and C, defined recently by Reiner in the noncrossing case and Postnikov in the nonnesting case. Some of...
متن کاملGray codes and lexicographical combinatorial generation for nonnesting and sparse nonnesting set partitions
We present combinatorial Gray codes and explicit designs of efficient algorithms for lexicographical combinatorial generation of the sets of nonnesting and sparse nonnesting set partitions of length n. AMS Subject Classification (2000): 05A18, 68R05, 68W99, 94B25.
متن کاملA bijection between noncrossing and nonnesting partitions of types A, B and C
The total number of noncrossing partitions of type Ψ is equal to the nth Catalan number 1 n+1 ( 2n n ) when Ψ = An−1, and to the corresponding binomial coefficient ( 2n n ) when Ψ = Bn or Cn. These numbers coincide with the corresponding number of nonnesting partitions. For type A, there are several bijective proofs of this equality; in particular, the intuitive map, which locally converts each...
متن کاملA bijection between noncrossing and nonnesting partitions for classical reflection groups
We present an elementary type preserving bijection between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis.
متن کاملThe M - triangle of generalised non - crossing partitions for the types
The M -triangle of a ranked locally finite poset P is the generating function P u,w∈P μ(u,w)x rk uyrk w, where μ(., .) is the Möbius function of P . We compute the M triangle of Armstrong’s poset of m-divisible non-crossing partitions for the root systems of type E7 and E8. For the other types exceptDn this had been accomplished in the earlier paper “The F -triangle of the generalised cluster c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 39 شماره
صفحات -
تاریخ انتشار 2014